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MemSQL Overview
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MemSQL: The No-Limits Database

The cloud-native operational database built for speed and scale

Accelerate time to insight
withultrafastingestand —— —
high performance query

Build on a cloud-native data platform
designed for today’s most demanding
applications and analytical systems

Reduce cost and complexity by leveraging
amodern yet familiar and easy to integrate
traditional RDBMS running standard SQL
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ML/AI & MemSQL



The Promise
of ML/AI

Artificial intelligence (Al)
has the potential to create
tremendous value across
sectors
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Challenges Delivering a Real-Time ML
Application

Data exploration & preparation

Algorithm selection, model training & refinement
Assembling data for scoring

Scoring

Model monitoring, refinement, & retraining
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Challenges Delivering a Real-Time ML
Application

Algorithm selection, model training & refinement

, refinement, & retraining
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MemSQL Drives Improvement Across the ML Lifecycle

Define ML use cases

Define specific ML use cases
for the project

Data exploration

Perform exploratory data
analysis to understand
the data

\ J
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Monitor model

Monitor deployed ML model
and retrain or rebuild when

performance degrades

-

Operationalize model

Deploy and operationalize
ML model in production

Select algorithm

Choose the right ML
algorithm for the task

Plan for deployment

Prepare for deployment in
production

\

from raw data for the

Data pipeline & Build ML model
feature engineering Develop the first iteration
Create the right features of the ML model

ML task J

Present results Iterate ML model
Present results of the model in Refine the ML model to
a way that demonstrates its improve performance and
value to stakeholders efficacy

A\ MEMSQL



Operationalize ML/AIl with
Speed, Scalability, SQL, & Programmability

e Scoredataduring streaming load with pipelines transforms
e Scorefastin-database with
o vector functions
o compiled expressions and functions
o scale-out & parallelism
e Assemble up-to-date feature records to score with an external app

| —



How MemSQL Operationalizes
ML Applications
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Al/ML Tool Integration with MemSQL

e MemSQL as asource for training data

e Support for virtually all tools that can connect to MySQL, e.g.

pandas |

‘+ Tensor

b Brumry
R Ok

o Qsasg named connector

o

e aaneusaL



Use Loading Tools for Bulk or Real-Time Ingest

Real-Time Data §‘8 CDC

Kafka ' ATTUNITY
,@ REPLICATE

Transforms I3 ETL/ELT

Spark Informatica, Talend

Data Lakes W [@]

HDFS  AWS S3 Azure Blob
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Use MemSQL Pipelines for Scoring on Load

e MemSQL Pipelines

o Automatic streaming loader

e Transform types
o Python
o Executable

o Use
o  Compute new "score" column from
other columns during load

e Benefits J1o1)
o Use with any external scoring code Filesystem
or libraries

.



Pipeline Transform Example

CREATE PIPELINE mypipeline AS

LOAD DATA KAFKA '192.168.1.100:9092/my-topic'
WITH TRANSFORM
('http://www.memsqgl.com/my-transform.tar.gz',
'my-executable.py', '")

INTO TABLE t

More at https://docs.memsgl.com/memsql-pipelines/v6.8/transforms/
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https://docs.memsql.com/memsql-pipelines/v6.8/transforms/

Implementing Scoring With Extensibility

e Support for: e Benefits
o User-defined functions (UDFs) o Combine with other SQL (joins, filters, etc.)
o Stored procedures (SPs) o Use with SQL-compatible tools
o User-defined aggregates (UDAFs) o Compiled code and scale-out performance
o Arrays
o Records
o  Control structures

e |mplement PMML or other
models for in-DB scoring

e




Example: Regression Line

o f(x)=0.73x+2.95

® create or replace function f(x double)
returns double as

begin
return 0.73 * x + 2.95;
end;

¢ select a, b, f(x) from t;
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Scoring Using Vector Embeddings

e Produced by deep neural net
hidden layer
e Embedding maps
high-dimensional space to low
e.g.
o High:image (256 X 256 matrix) >
o  Low: 1000-element vector
e Applications
o face matching
product photo matching

@]
o document similarity
o andonandon!

e
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Real-Time Image
Recognition Workflow

e Trainthe model with Spark,
TensorFlow, and Gluon

e Usethe Model to extract feature
vectors (embeddings) from images

o Model +Image =>FV

e Youcan store every feature vector
ina MemSQL table

CREATE TABLE features (

id bigint (11)

NOT NULL,

feature binary (4096),
KEY id (id)USING CLUSTERED

COLUMNSTORE
)

AA MEMSQL




MemSQL Functions for Vector Similarity Matching

e DOT PRODUCT(vector, vector)
e EUCLIDEAN _DISTANCE(vector, vector)

(fast SIMD implementations)
Helper functions:

e JSON_ARRAY PACK('[float],...]]")
e VECTOR SUB(vector, vector)
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Working with Feature Vectors

For every image, we store an ID and a normalized FEATURE vector in a MemSQL table called features.

D | Feature Vector
_____ _|__________________

int | 4KB binary

To find similar images, we use this SQL query

SELECT

id, DOT_PRODUCT (feature, <input>) as score
FROM

features
WHERE

DOT_ PRODUCT (feature, <input>) > 0.9
ORDER BY score DESC

.




Face Matching with MemSQL

e Face matching, pre-trained networks

o VGG-Face

o Facenet
e Match millions of images to a query image in a fraction of a second
e Apps can use this combined with SQL join/filter

e New images can be continuously added and tagged with embedding

| —





https://docs.google.com/file/d/1rTu6tbZhfXEfMuetEdqttGQpP4h-5MSL/preview

Real-Time Feature Retrieval For
Scoring in OLTP Apps

Example: credit card fraud detection

1 second budget from card swipe to approval
Do fraud detection within this 1 second

50 msec budget

70-value feature record to score

. e aaneusaL
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Credit OLTP + Scoring App Architecture

User Request Scoring Service
OLTP App

)%

OLTP Database MemSQL

A\ MEMSQL



Creating the feature record in real time

Example features:

has transacted with merchant

days since last transaction with merchant

max amount transacted with merchant in last 180 days
min " "

180 days total merchant transaction amount

card present transaction count last 1, 7, 30 days

online transaction count last 1, 7, 30 days

(70 or more features!)

B

Options

1. Old way: nightly batch job to accumulate feature
record for each customer in traditional
"operational data store"; look it up for scoring

2. New way: run up to 70 queries concurrently (one
per feature or few features) on latest data to get
features in < 50 msec total in real time operational
datastore

MemSQL enables #2!

Benefits:
e enables new features like "transactions in last 2
hours"
e freshfeatures & new kinds of features enable
catching more fraud cases




Additional Resources

MemSQL Vector Functions
https://msqgl.co/vector-functions

Google Crash Course on ML: Embeddings
https://msal.co/google-embeddings

MemSQL Face Matching Blog
https://msal.co/Face-matching

. e aaneusaL



https://msql.co/vector-functions
https://msql.co/google-embeddings
https://msql.co/Face-matching

Thank You! Questions?

Try at memsgl.com/download
No time limit \(ﬂ

Deploy to production

Full featured kgjﬁ/
—_—

Up to 4 Nodes, unlimited disk

Get support at forum.memsql.com kt:j\)

Learn more at memsgl.com/product

Questions? Email us at team@memsql.com



